

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 5953-5955

Tetrahedron Letters

Thionation of the monoacetal of pentacyclo[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]undecane-8,11-dione

Colin E. Read,* Frans J. C. Martins and Agatha M. Viljoen

School of Chemistry and Biochemistry, Potchefstroom University for C.H.E., Potchefstroom 2520, South Africa

Received 28 November 2003; revised 7 June 2004; accepted 14 June 2004

Abstract—As part of a programme to synthesize thione derivatives with pentacyclo[$5.4.0.0^{2.6}.0^{3,10}.0^{5,9}$]undecane moieties it was decided to sulfurize the monoacetal **6** of pentacyclo[$5.4.0.0^{2.6}.0^{3,10}.0^{5,9}$]undecane-8,11-dione **2**. Unexpectedly the diol **9** was isolated as the product.

© 2004 Elsevier Ltd. All rights reserved.

It was previously reported¹ that the dithione **1** can be obtained from the dione 2 by treatment with bis(tricyclohexyltin)sulfide and boron trichloride. It was claimed¹ that **1** is formed in solution only and is extremely labile and not amenable to isolation. It was anticipated¹ that structural modifications could lead to isolable derivatives. Recently,² the reaction of 2 with a gaseous H₂S/HCl mixture in methanol was described by Romański and Marchand who reported the formation of a mixture of two sulfur-bridged cage compounds, which were isolated and characterized.² However, our efforts for the preparation of thione derivatives from the diones 2, 3, 4 and 5 (Fig. 1) with different thionating reagents proved to be unsuccessful. These diones could not be thionated to their respective dithione derivatives with silicon disulfide (SiS_2) , boron sulfide (B_2S_3) , bis(tricyclohexyltin)sulfide, hydrogen sulfide, tetraphosphorus-decasulfide or Lawesson's reagent (LR). Material, which could not be characterized or starting material was recovered in each case. Efforts to sulfurize the same diones with H_2S and HCl(g) in methanol at low temperatures were also unsuccessful and only starting material could be isolated.

Sulfuration of ketones with SiS_2 , B_2S_3 and bis(tricyclohexyltin) sulfide proceeds via the formation of relatively large complex intermediates.^{1,3–6} In the case of

sterically hindered carbonyl groups the thionation reaction is probably retarded. The intercarbonyl distances of the above mentioned diones may play a vital role in the thionation process. Molecular power field calculations with HYPERCHEM PRO'S MM+ programme⁷ shows that the intercarbonyl carbon atom distance of **2** is 0.2748 nm while the corresponding distances in **3**, **4** and **5** are 0.2795, 0.2691 and 0.2703 nm, respectively, and are indicative of vulnerability to steric effects. These calculations were verified with calculations using the SPARTAN PRO-programme⁸ with a MMFF 94 power field.

It is well known that only one carbonyl group of pentacyclo $[5.4.0.0^{2.6}.0^{3,10}.0^{5,9}]$ undecane-8,11-dione reacts with ethylene glycol and *p*-toluenesulfonic acid in

Keywords: Sulfuration; Thionation; Lawesson's reagent; Thione; Pentacyclo[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]undecane-8,11-dione.

^{*} Corresponding author. Tel.: +27-18-299-2351; fax: +27-18-299-2350; e-mail: checer@puknet.puk.ac.za

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.06.054

Figure 2.

benzene to form the monoacetal 6^9 (Fig. 1). It was therefore decided to sulfurize the monoacetal in an attempt to obtain the thione 7.

Thionation of **6** (1 g, 4.59 mmol) with Lawesson's reagent^{10,11} (0.926 g, 2.29 mmol) in dry tetrahydrofuran (70 mL) under a nitrogen atmosphere yielded a light yellow reaction mixture from which the thione **7** could not be isolated. Instead, a colourless product formed of which the IR-spectrum (KBr-disc) exhibited a strong hydroxylic OH-stretch absorption at 3240 cm⁻¹.

The mass spectrum (EI) registered a molecular ion at m/z 208 corresponding to a molecular formula of $C_{11}H_{12}SO_2$. The thione **7** is probably hydrolyzed by dithiophosphonic acid derivatives in Lawesson's reagent. Two structures correspond with these data, namely structures **8** and **9** (Fig. 2).

No SH-stretch absorption could be seen in the $2600-2550 \text{ cm}^{-1}$ region of the IR-spectrum, however this does not exclude compound **8** as SH stretch absorptions are normally very weak.¹² On the basis of ¹H and ¹³C NMR studies structure **9** was allocated to the product. The ¹H and ¹³C NMR data are collected in Table 1.

The 75 MHz ¹³C NMR spectrum [(CD₃)₂SO] of **9** exhibited only six carbon resonance signals that were supportive of a symmetrical molecule. The quaternary carbon resonance at $\delta_{\rm C}$ 101.9 can be associated with carbon atoms C-8 and C-11, which are linked to strong electronegative atoms. The methylene carbon atom C-4 resonated at $\delta_{\rm C}$ 41.3. The remainder of the ¹³C NMR spectrum consisted of four signals at $\delta_{\rm C}$ 40.1, 44.8, 52.7 and 62.4.

The ¹³C chemical shifts of **9** correspond with those of compound **10** (Fig. 2, Table 1). The carbon resonance signals in the ¹³C NMR spectrum of **10** were assigned previously¹³ from proton–proton 2D chemical shifts (COSY) and heteronuclear (¹³C, ¹H) 2D correlation (HETCOR) experiments. The assignments were verified with ¹³C and ¹H selective population inversion (SPI) experiments.¹⁴

Different authors^{15–18} have shown that the interpretation of the ¹H NMR spectra of compounds like **9** is difficult, even with 500 MHz acquisitions because long distance interactions (over more than three bonds) occur, which give broad undefined resonance signals. The 300 MHz NMR spectrum of **9** showed an AB spin system for the methylene protons of C-4 and three broad complex signals in the highfield region due to long distance proton–proton interactions.

Signals at $\delta_{\rm H}$ 2.52 and 2.62 integrated for two protons each and a signal at $\delta_{\rm H}$ 2.76 integrated for four protons. A broad deuterium exchangeable proton signal occurred around $\delta_{\rm H}$ 6.38, which was assigned to the two hydroxyl group protons in compound **9**.

The assignment of the signals in the ¹H and ¹³C NMR spectra of compound **9** to specific nuclei was derived from HETCOR and COSY 2D experiments. These data were backed by correlation spectroscopy in which direct and long distance couplings of proton–carbon interactions were detected (COLOC¹⁹ and LRHETCOR).²⁰ On the basis of previous studies^{21–24} the doublet at $\delta_{\rm H}$ 1.55 (J = 10.3 Hz) was allocated to H-4a and the doublet at $\delta_{\rm H}$ 1.88 (J = 10.3 Hz) to H-4s.

A COSY experiment showed cross correlation signals between the resonance signals of H-4 and the resonance signals at $\delta_{\rm H}$ 2.52. This correlation was associated with H-3 and H-5. Interactions between the signals at $\delta_{\rm H}$ 2.52 (H-3, H-5) and $\delta_{\rm H}$ 2.74 were associated with H-9 and H-10. The signal at $\delta_{\rm H}$ 2.76 was assigned to H-1 and H-7.

A HETCOR experiment showed long distance correlations between the quaternary carbon resonance at $\delta_{\rm C}$ 101.9 and the signals at $\delta_{\rm H}$ 2.74 and 2.76, therefore the signal at $\delta_{\rm H}$ 2.62 can be assigned to H-2 and H-6. The ¹³C resonance signal assignments were derived from a

Table 1. ¹H and ¹³C NMR spectroscopic data^a of 9

	1 1				
Carbon/hydrogen	$\delta_{\rm H}{}^{\rm b}$ (ppm)	J (Hz)	$\delta_{\rm C}{}^{\rm b}$ (ppm)	^{1}J (Hz)	$\delta_{\rm C}{}^{\rm b}$ (ppm) of 10^{12}
1 (7)	2.76		52.7 d	150.2	47.5
2 (6)	2.62		40.1 d	148.1	41.3
3 (5)	2.52		44.8 d	149.9	43.5
4 a	1.55 d	10.3	41.3 t	131.5	42.9
4 s	1.88 d	10.3			
8 (11)			101.9 s		112.2 s
9 (10)	2.74		62.4 d	145.5	57.4
ОН	6.38 br				

^{a 1}H-spectrum: 300 MHz, ¹³C-spectrum: 75 MHz.

^b Solvent (CD_3)₂SO. Capital letters refer to splitting patterns, which are attributed to direct coupled protons and small letters refer to couplings over more than one bond. s = singlet, d = doublet, t = triplet.

Scheme 2.

Scheme 1.

HETCOR experiment utilizing the assigned ¹H NMR spectrum and are collected in Table 1.

The transformation of the monoacetal **6** into the diol **9** demonstrates the influence of interatomic distances on the transannular reactions of the pentacyclo-undecane system. It has previously been shown¹³ that the dione **2** is not prone to transannular reactions while the dione **4** with smaller intercarbonyl group distances is more prone to transannular reactions (Scheme 1).

The diol 10 is highly unstable and easily suffers dehydration to give the dione $2^{.13}$ The stability of 9 can be attributed to the bigger sulfur atom, which probably forms a more stable bridge.

The formation of compound 9 from the monoacetal 6 can be explained schematically as shown in Scheme 2.

References and notes

- Steliou, K.; Mrani, M. J. Am. Chem. Soc. 1982, 104, 3104– 3106.
- Romański, J.; Marchand, A. P. Pol. J. Chem. 2004, 78, 223–230.
- 3. Dean, F. M.; Goodchild, J.; Hill, A. W. J. Chem. Soc. (C) **1969**, 2192–2195.
- Abel, E. W.; Armitage, D. A.; Bush, R. P. J. Chem. Soc. 1964, 5584–5587.
- 5. Diercks, H.; Krebs, B. Angew. Chem., Int. Ed. Engl. 1977, 16, 313.
- 6. Krebs, B.; Hurter, H. Angew. Chem., Int. Ed. Engl. 1980, 19, 481-482.

- 7. HYPERCHEM PRO V5.1. Molecular Modeling System, Hypercube Inc., 1998.
- 8. PC SPARTAN PRO. *Molecular Modelling*, Wavefunction Inc., 1999.
- Eaton, P. E.; Cassar, L.; Hudson, R. H.; Hwang, D. R. J. Org. Chem. 1976, 41, 1445–1448.
- Pedersen, B. S.; Scheibye, S.; Nilsson, N. H.; Lawesson, S. O. Bull. Soc. Chim. Belg. 1978, 87, 223–228.
- 11. Mazitova, F. N.; Khairullin, V. K. Zh. Obshch. Khim. 1981, 51, 958–959.
- 12. Silverstein, R. M.; Webster, F. X. Spectrometric Identification of Organic Compounds, 6th ed.; John Wiley and Sons: New York, 1998.
- Martins, F. J. C.; Viljoen, A. M.; Coetzee, M.; Fourie, L.; Wessels, P. L. *Tetrahedron* 1991, 47, 9215–9224.
- Pachler, K. G. R.; Wessels, P. L. J. Magn. Reson. 1977, 28, 53–61.
- 15. Marchand, A. P. Chem. Rev. 1989, 89, 1011-1033.
- 16. Craze, G. A.; Watt, I. J. Chem. Soc., Perkin Trans. 2 1981, 175–184.
- Cadd, D. H.; Feast, W. J.; Kenwright, A. M.; Say, J. M. Magn. Reson. Chem. 1993, 31, 801–807.
- Martins, F. J. C.; Coetzee, G. H.; Fourie, L.; Venter, H. J.; Viljoen, A. M.; Wessels, P. L. *Magn. Reson. Chem.* **1993**, *31*, 578–584.
- Essler, H.; Griesinger, C.; Zarbock, J.; Loosli, H. R. J. Magn. Reson. 1984, 57, 331–336.
- Krishnamurthy, V. V.; Nunlist, R. J. Magn. Reson. 1988, 80, 280–295.
- Martins, F. J. C.; Viljoen, A. M.; Kruger, H. G.; Joubert, A. *Tetrahedron* 1993, 49, 9573–9580.
- Martins, F. J. C.; Viljoen, A. M.; Kruger, H. G.; Joubert, J. A.; Wessels, P. L. *Tetrahedron* **1994**, *50*, 10783–10790.
- Martins, F. J. C.; Viljoen, A. M.; Kruger, H. G.; Wessels, P. L. *Tetrahedron* 1993, 49, 6527–6532.
- Martins, F. J. C.; Viljoen, A. M.; Kruger, H. G.; Fourie, L.; Roscher, J.; Joubert, A. J.; Wessels, P. L. *Tetrahedron* 2001, *57*, 1601–1607.